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No~~ENcLAT~RE 

local heat-transfer coefhcient; 
acceleration due to gravity; 

Grashof number, @c-!Y? ; 
\J 

characteristic length; 

Nusseh number *-. 
‘kAT’ 

Prandtl number, 1; 
K 

local heat transfer per unit time per unit area; 
heat-transfer coefficient of Merkin’s numerical 
results: 

Reynolds number. .E ; 
1’ 

wall temperature; 
stream temperature; 
= 70 - T,. ; 

u, fi. z:, F, dimensionless velocities; 
-% dimensionless distance from leading edge; 

_ ?‘. ?‘, dimensionless distances normal to plate. 

Greek symbols 

B? coefficient of thermal expansion; 

; 
kinematic viscosity; 
dimensionless temperature; 

c characteristic coordinate, y ; 

% similarity variable. 

Subscripts 

L, s, 
M. 

Lloyd and Sparrow; 
Merkin. 

~~~RO~~~~~O~ 
AN EXAMINATION of the series of theoretical and exper- 
imental papers [l-S], investigating the flow of a uniform 
stream U past a semi-infinite vertical plate held&t constant 
temperature TO, suggests that for general Prandtl number 
confidence may be placed in heat-transfer coefficient esti- 
mates based either on local similarity analysis or series 
solution representations. It must be recognised however that 
both of these theoretical methods rely on re-solving two 
point boundary value problems for each particular Prandtl 
number so that each new value must in essence be treated 
as a new problem. This is also true for any further full 
numerical solution of the problem and it would appear at 
first sight that the Merkin [6] solution simply served the 
purpose of providing validation of the series solutions 
together with specific details for the case Pr = 1. In the work 
that follows it is to be demonstrated that this need not be 
so. It is shown that the detailed numerical work in fact 
provides a universal profile for the local heat-transfer 
coefficients for a large range of Prandtt numbers. The format 

in which this profile is presented allows estimates of local 
heat-transfer coefficients to be obtained straightforwardly 
through simple scaling with respect to any Prandtl number 
within the appropriate range. 

THE UNIVERSAL PROFILE 

The dimensionless form of the laminar boundary-layer 
equations governing the flow are 

c’u ___ + r’l? = () 
c’x ?J 

(1) 

a ?! Jr r> :?! = .G 0 + izl, 
?.x (71’ R2 (?JZ (2) 

?fI (‘0 1 i% 
u--fc-_ = ._, 

dx 3~ Pr Sy’ 
(3) 

Acrivos [9] hasshown that appropriate co-ordinate trans- 
formations under the constraint of large Prandtl number are 

r = ypr:, li = upr’. r = cpr’ 

revealing the form of the boundary-iay~r equations (t)-(3) 
relevant to an inner thermal layer as 

r’li (II: 

iu 
m-+;;=o (4) 

,Il_e+i$o_=IE. 
i7x ip ;p 

(61 

It follows immediately that for Pr B 1. the problem is 
characterised by the single dimensionless group Gr/Re’Pr i 
as opposed to the two original groups Gr/Re’ and Pr. In 
particular it must be concluded that in the limit as Pr --t 35 
the local heat-transfer coefficient is given by 

(7) 

It is a fact of general experiences that analysis based on 
the hypothesis of a parameter c I or >> 1 will often provide 
wholly valid information into the parameter range O( 1). If it 
is conjectured that relationship (7) falls into such a category, 
the conclusion for Pr = 1 would be 

(8) 

Note that the particular geometry under consideration lacks 
a specific characteristic length L and that therefore par- 
ameters must be interpreted locally with respect to the 
distance from the leading edge s. The R.H.S. of (8) is then 
effectively a formulation F(4) where 5 is the now well known 
characteristic co-ordinate of the problem reflecting local 
relative importance of buoyancy and inertia forces at various 
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TabI? 2 

0 0.2956 0.2976 0.728 1 0.7153 1.572 I.514 
0.1 0.3 158 0.3259 0.7574 0.7424 
0.4 0.3561 0.3686 
1.0 0.4058 0.4238 0.9212 0.8836 1.826 1.721 
2.0 0.4584 0.4778 1.029 0.9847 1.994 1.907 
4.0 O.S25X 0.5574 1.173 1.121 2.232 2.095 

10 0.6870 1.351 2.476 
100 I .2922 2.51 4.141 

FIG. 1. Leading edge values of heat-transfer coefficient. 
Upper curve related to left hand ordinate and lower abscissa; 
Lower curve related to right hand ordinate and upper 

abscissa: x. Lloyd and Sparrow [5] computed results. 

stations alon? the plate. Is it possible that 

Nu 
-- = F(t) = _c’Bw (<. 0) 

Rd ku 
(9) 

where M subscript refers to Merkin’s results, provides a 
particular instance of the more general relation 

We examine this conjecture in the results. 

RESULTS 

A preliminary investigation which naturally suggests itself 
is a comparison of the leading edge estimates of Lloyd and 
Sparrow’s local similarity results with estimates based on 
(IO) namely 

A detailed examination thus requires a comparison of the 
forecast 

Table 1 

0.03 0.08439 0.1031 
0.72 0.2956 0.2976 

10 0.728 1 0.7153 
100 1.571 1.541 

These values give cause for optimism since discrepancies for 
Pr > 0.72 are less than 2% whilst the larger discrepancy for 
Pr = 0.03 is only to be expected bearing in mind the 
asymptotic origins of (12). Figure 1 highlights the Pr? 
behaviour for large Prandtl number and also displays the 
change to Prt behaviour for small Prandtl number in 
accordance with the expectation that 

At general stations along the plate Merkin’s results are 
presented in terms of 

2; = p” 0.469600 = Pr’O.33206. 
\!2 

with the computed values of Lloyd and Sparrow, where the 
factor J2 accounts for a minor difference in formulation 
between the respective authors. Table 1 demonstrates pre- 
cisely this comparison. 

so that a full examination of the universal profile conjecture 
requires a direct comparison of 
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FIG. 2. Local heat-transfer coefficient estimates for forced-free convection flow about an isothermal plate: 

x1 universal profile values; ---, forced and free convection asymptotes. 

with those computed values of Lloyd and Sparrow. Such a 
comparison is presented in Table 2. Without additional 
numerical information for Q near 5 = 0 further comparison 
for Pr = 100 is difficult because of the rate of change of Q 
in that vicinity. Otherwise the results of Table 2 are based 
on simple linear interpolations between Merkin’s published 
results, To facilitate examination of the conjecture with 
respect to the anticipated free convection asymptotes at 
large 5 evaluations of (14) at 5 = 10, 100 have also been 
included in Table 2. The level of agreement is always within 
7”/, and in many cases much less than this maximum 
deviation. Figure 2 illustrates the overall results. Reference 
to [g] confirms not only a satisfactory comparison with 
local similarity results, but also a favourable comparison 
with existing experimental work for the case Pr = 0.72. 

DISCUSSION 

The conjecture that an analysis based upon Pr >> 1 might 
offer information into the range Pr of O(1) has, to a level 
of agreement acceptable for practical purposes, been sub- 
stantiated. The consequence has been to conclude that the 
numerical solution of Merkin provides a universal profile 
for the local heat-transfer coefficient when interpreted in 
accordance with (14). This straightforward scaling of avail- 
able results might well be used with some degree of con- 
fidence for Prandtl numbers greater than 0.4 (see Fig. 1). 

Although attention has here been focused on the flat plate 
geometry with uniform free stream and uniform plate tem- 
perature the scaling arguments with respect to large Prandtl 
number remain true for more general combined free and 

forced convection flows. It may well be that the conjecture 
of a universal profile obtained from a particular exact solu- 
tion holds good in a variety of circumstances over similar 
ranges of Prandtl number values. 
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